投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

计算机软件及计算机应用论文_基于无监督域自

来源:黑龙江科学 【在线投稿】 栏目:期刊导读 时间:2021-09-05
作者:网站采编
关键词:
摘要:文章摘要:作为工业互联网的典型实例之一,车联网技术近年来飞速发展,其核心在于信息的互联互通.因此,精准、可迁移的环境信息感知能力是其稳定运行的前提之一.深度学习的进步推动

文章摘要:作为工业互联网的典型实例之一,车联网技术近年来飞速发展,其核心在于信息的互联互通.因此,精准、可迁移的环境信息感知能力是其稳定运行的前提之一.深度学习的进步推动了计算机视觉任务的发展,但基于传统深度学习的方法仍存在训练过程对人工标注数据依赖强、场景泛化能力较差的弊端.而对于计算机视觉任务来说,训练数据的真值标签获取较难,因此如何提升模型的迁移能力,缓解训练对人工标注的依赖受到了学界的广泛关注.无监督域自适应方法使用深度学习模型进行特征提取和对齐,使得深度学习模型在不同域间迁移时仍能保证良好的性能,在计算机视觉任务中发挥了重要作用.因此,本综述主要聚焦无监督域自适应方法在一些典型计算机视觉任务中的挑战和应用.首先,介绍了基于深度学习的无监督域自适应方法的定义、重要意义、应用难点、基本方法和相关数据集.然后,分别针对典型计算机视觉任务介绍了无监督域自适应方法在其中的应用.最后,进行了总结和展望.

文章关键词:无监督域自适应,计算机视觉,深度学习,迁移学习,自主系统,

项目基金:国家自然科学基金基础科学中心项目(批准号:61988101),国家杰出青年科学基金(批准号:61725301),高等学校学科创新引智计划(编号:B17017),中央高校基本科研业务费专项资金(编号:222202117006)资助,《黑龙江科学》 网址: http://www.hljkxzz.cn/qikandaodu/2021/0905/2101.html



上一篇: 水产和渔业论文_三峡变动回水区蓄水期鱼群空
下一篇: 出版论文_谈学术专著出版优势学科的构建与发

黑龙江科学投稿 | 黑龙江科学编辑部| 黑龙江科学版面费 | 黑龙江科学论文发表 | 黑龙江科学最新目录
Copyright © 2018 《黑龙江科学》杂志社 版权所有
投稿电话: 投稿邮箱: